Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available October 12, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern data centers, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking remote memory prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by aligning memory accesses from application and GC threads so that they follow similar memory access paths, thereby (1) reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely deployed cloud systems shows that MemLiner improves applications’ end-to-end performance by up to3.3×and reduces applications’ tail latency by up to220.0×.more » « lessFree, publicly-accessible full text available August 31, 2026
-
Many applications can benefit from data that increases performance but is not required for correctness (commonly referred to as soft state). Examples include cached data from backend web servers and memoized computations in data analytics systems. Today's systems generally statically limit the amount of memory they use for storing soft state in order to prevent unbounded growth that could exhaust the server's memory. Static provisioning, however, makes it difficult to respond to shifts in application demand for soft state and can leave significant amounts of memory idle. Existing OS kernels can only spend idle memory on caching disk blocks—which may not have the most utility—because they do not provide the right abstractions to safely allow applications to store their own soft state. To effectively manage and dynamically scale soft state, we propose soft memory, an elastic virtual memory abstraction with unmap-and-reconstruct semantics that makes it possible for applications to use idle memory to store whatever soft state they choose while guaranteeing both safety and efficiency. We present Midas, a soft memory management system that contains (1) a runtime that is linked to each application to manage soft memory objects and (2) OS kernel support that coordinates soft memory allocation between applications to maximize their performance. Our experiments with four real-world applications show that Midas can efficiently and safely harvest idle memory to store applications' soft state, delivering near-optimal application performance and responding to extreme memory pressure without running out of memory.more » « less
An official website of the United States government

Full Text Available